我是靠谱客的博主 踏实帅哥,最近开发中收集的这篇文章主要介绍大数据量mysql数据分区(时间)导入hive,Spark,scala实现大数据量mysql数据分区(时间)导入hive,Spark,scala实现,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

大数据量mysql数据分区(时间)导入hive,Spark,scala实现

说明:代码包含了mysql分区导入hive,hive导入mysql,scala编写

package datasource

import java.sql.{Connection, DriverManager}
import java.text.SimpleDateFormat
import java.util
import java.util.Properties

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

object DataBaseRead {
  def main(args: Array[String]) = {
    val url = "jdbc:mysql://localhost:3306/test"
    val tablename = "stu1"
    val user = "root"
    val password = "root"
    val column = "createTime" //分区字段
    val coltype = "date" //分区类型
    val partition = "50" //分区个数
   // val frame: DataFrame = getSpark.sql("select * from hehe")
   // saveASMysqlTable(frame,"result","append")
    ReadSql(url, tablename, user, password, column, coltype, partition)
  }

  //读取mysql数据库到hive
  def ReadSql(url: String, tablename: String, user: String, password: String, column: String, coltype: String, partition: String) = {
//    val conf = new SparkConf().setAppName("bigdata test").setMaster("local[*]")
//    val spark = SparkSession.builder().config(conf).getOrCreate()
    val spark: SparkSession = getSpark
    val prop = new Properties()
    prop.put("driver", "com.mysql.jdbc.Driver")
    prop.put("url", url)
    prop.put("dbtable", tablename)
    prop.put("user", user)
    prop.put("password", password)
    //如果分区字段是long类型的,那么在读取mysql的时候,需要多加几个参数:列名,最小值,最大值,分区数
    if (coltype.toLowerCase() == "long") {
      val ab = LongTypeConn("com.mysql.jdbc.Driver", url, user, password, column, tablename)
      val lowerNum = ab(0)
      val upperNum = ab(1)
      val longFrame = spark.read.jdbc(
        prop.getProperty("url"),
        prop.getProperty("dbtable"),
        column, lowerNum, upperNum,
        partition.toInt, prop
      )
      //longFrame.write.mode(SaveMode.Overwrite).json("D:\out")
    }
    //如果是时间类型的,那么在读取的时候需要多一个参数,就是我们自定义划分的时间区间
    else if (coltype.toLowerCase() == "date") {
      var arr2 = DateTypeConn("com.mysql.jdbc.Driver", url, user, password, column, tablename, partition.toInt)
      val strings: Array[String] = arr2.toArray[String]
      for (elem <- strings) {
        println(elem)
      }
        //生成dataFrame
      val dateFrame = spark.read.jdbc(
        prop.getProperty("url"),
        prop.getProperty("dbtable"),
        strings,prop)
     dateFrame.createTempView("temp")
          val dtypes: Array[(String, String)] = dateFrame.dtypes
         var arr=""
          for (elem <- dtypes) {
            arr+=elem
          }
          val ctr ="create table if not exists "+tablename+"("+"nt"
        val str: String = arr.replace("IntegerType", "int").replace("StringType","string")
          .replace("DoubleType", "double").replace("DateType","date").replace("LongType","bigint").replace("TimestampType","string")
          .replace(","," ").replace(")",",nt").replace("(","").dropRight(3)
          var end ="nt)"
          var fengen=","
          var fenge="nrow format delimited fields terminated by '"+fengen+"'"
      var sparkSql=ctr+str+end+fenge
      println(sparkSql)
      spark.sql(sparkSql)
       spark.sql("insert into table "+tablename+" select * from temp")
      spark.close()
//      dateFrame.write.mode(SaveMode.Overwrite).json("C:\Users\86186\Desktop\out")
    }

    /*
    如果分区字段是Long类型的数据,比如id,那么我们需要得到该字段的最大和最小值,再根据设置的分区个数进行分区
 */
    def LongTypeConn(driver: String, url: String, user: String, password: String, column: String, tablename: String): ArrayBuffer[Long] = {
      var conn: Connection = null
      val array = new ArrayBuffer[Long]()
      try {
        Class.forName(driver)
        conn = DriverManager.getConnection(url, user, password)
        val stat = conn.createStatement()
        val rs = stat.executeQuery("select min(" + column + ") as minNum,max(" + column + ") as maxNum from " + tablename)
        while (rs.next()) {
          val minNum = rs.getLong("minNum")
          val maxNum = rs.getLong("maxNum")
          array.append(minNum)
          array.append(maxNum)
        }
        return array
      } catch {
        case e: Exception => e.printStackTrace()
          return array
      }
      conn.close()
      return array
    }
  }
  /*
    如果分区字段是时间类型的,那么我们需要将数据表中的时间字段划分成一个个的时间段,并放到一个数组中
    */
  def DateTypeConn(driver: String, url: String, user: String, password: String, column: String, tablename: String, partition: Int):ArrayBuffer[String] ={
    var conn:Connection = null
    val array = new ArrayBuffer[String]()
    val resArray = ArrayBuffer[(String,String)]()
    var lastArray = ArrayBuffer[String]()

    try{
      Class.forName(driver)
      conn = DriverManager.getConnection(url,user,password)
      val stat = conn.createStatement()
      val rs = stat.executeQuery("select min(" +column +") as minNum,max(" + column + ") as maxNum from " + tablename)
      while (rs.next()){
        val minNum = rs.getString("minNum")
        val maxNum = rs.getString("maxNum")
        array.append(minNum)
        array.append(maxNum)
      }
      /*
      因为有很多种时间格式,所以在具体开发过程中,我们需要根据我们自己的数据格式进行处理,此处列举三种常见的时间格式
       */
      if(array(0).contains("-")){
        val sf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
        var hehe=sf.parse(array(0)).getTime()
        var minTime = sf.parse(array(0)).getTime()
        val maxTime = sf.parse(array(1)).getTime()
        val subNum = (maxTime - minTime)/partition.toLong
        var midNum = minTime
        for(i <- 0 to partition - 1){
          minTime = midNum
          midNum = midNum + subNum
          if(i == 0){
            resArray.append(sf.format(minTime) -> sf.format(midNum))
          }else if(i == partition - 1){
            resArray.append(sf.format(minTime) -> sf.format(maxTime))
          }else{
            resArray.append(sf.format(minTime) -> sf.format(midNum))
          }
        }
        for (elem <- resArray) {
          if(elem._1.toString==sf.format(hehe)){
            lastArray+= column.toString + ">= '" +elem._1+ "' and " + column.toString + " <= '"+elem._2 +"'"
          }else{
            lastArray+= column.toString + "> '" +elem._1+ "' and " + column.toString + " <= '"+elem._2 +"'"
          }
        }
        return lastArray
      }else{
        val sf = new SimpleDateFormat("yyyyMMdd HH:mm:ss")
        var minTime = sf.parse(array(0)).getTime()
        val maxTime = sf.parse(array(1)).getTime()
        val subNum = (maxTime - minTime)/partition.toLong
        var midNum = minTime
        for(i <- 0 to partition - 1){
          minTime = midNum
          midNum = midNum + subNum
          if(i == 0){
            resArray.append(sf.format(minTime) -> sf.format(midNum))
          }else if(i == partition - 1){
            resArray.append(sf.format(minTime) -> sf.format(maxTime))
          }else{
            resArray.append(sf.format(minTime) -> sf.format(midNum))
          }
        }
       for (elem <- resArray) {
          if(elem._1.toString==sf.format(hehe)){
            lastArray+= column.toString + ">= '" +elem._1+ "' and " + column.toString + " <= '"+elem._2 +"'"
          }else{
            lastArray+= column.toString + "> '" +elem._1+ "' and " + column.toString + " <= '"+elem._2 +"'"
          }
        }
        return lastArray

      }
      return lastArray
    }catch {
      case e:Exception => e.printStackTrace()
        return lastArray
    }
    conn.close()
    return lastArray
  }
    //获取spark环境用于mysqlToHive
  def getSpark={
    val conf=new SparkConf().set("spark.sql.inMemoryColumnarStorage.Compressed","true").set("spark.sql.crossJoin","true").setAppName("mysql in hive").setMaster("local[*]")
    val hiveSpark=SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
    hiveSpark
  }


//从hive读取数据到mysql
  def saveASMysqlTable(dataFrame: DataFrame, tableName: String, saveMode: String) = {
    var table = "result"
    val prop = new Properties //配置文件中的key 与 spark 中的 key 不同 所以 创建prop 按照spark 的格式 进行配置数据库
    prop.setProperty("user", "root")
    prop.setProperty("password", "root")
    prop.setProperty("driver", "com.mysql.jdbc.Driver")
    prop.setProperty("url", "jdbc:mysql://127.0.0.1:3306/test?useSSL=false&autoReconnect=true&failOverReadOnly=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=utf-8")
    if (saveMode == SaveMode.Overwrite) {
      var conn: Connection = null
      try {
        conn = DriverManager.getConnection(
          prop.getProperty("url"),
          prop.getProperty("user"),
          prop.getProperty("password")
        )
        val stmt = conn.createStatement
        table = table.toUpperCase
        stmt.execute(s"truncate table $table") //为了不删除表结构,先truncate 再Append
        conn.close()
      }
      catch {
        case e: Exception =>
          println("MySQL Error:")
          e.printStackTrace()
      }
    }
    dataFrame.write.mode(SaveMode.Append).jdbc(prop.getProperty("url"), table, prop)
  }
}

最后

以上就是踏实帅哥为你收集整理的大数据量mysql数据分区(时间)导入hive,Spark,scala实现大数据量mysql数据分区(时间)导入hive,Spark,scala实现的全部内容,希望文章能够帮你解决大数据量mysql数据分区(时间)导入hive,Spark,scala实现大数据量mysql数据分区(时间)导入hive,Spark,scala实现所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(81)

评论列表共有 0 条评论

立即
投稿
返回
顶部