我是靠谱客的博主 酷炫墨镜,最近开发中收集的这篇文章主要介绍二分查找编码套路,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

二分查找的思想很好理解,但要写出没有bug的代码却并不是件容易的事。对于有序数组的二分查找,可以遵循一些套路快速写出无错代码。

下面先给出二分查找有序数组的一些问题,所有问题参考了《编程之美》。

1、给定非降序数组A,求任意一个i使得A[i]等于target,如不存在则返回-1。

2、给定非降序数组A,求最小的i使得A[i]等于target,如不存在则返回-1。

3、给定非降序数组A,求最大的i使得A[i]等于target,如不存在则返回-1。

4、给定非降序数组A,求最小的i使得A[i]大于target,如不存在则返回-1。

5、给定非降序数组A,求最大的i使得A[i]小于target,如不存在则返回-1。

6、给定非降序数组A和待插入元素target,返回待插入位置的下标。

二分查找的正确实现代码有多种形式,但要求以下几处达成一致:

1、初始化查找范围

2、计算中间位置的方法

3、循环结束条件

4、逼近方法

5、返回值

其中,

查找范围可以采用开区间,也可采用闭区间,或者半开半闭区间。

计算中间位置可以用mid=lo+(hi-lo)/2,也可以用mid=lo+(hi-lo+1)/2,在某一次探测过程中,如果数组长度为奇数,那么正中间恰好只有一个元素,此时这两种表达式效果是一样的,都取正中间元素;而如果数组长度为偶数,那么正中间没有元素,或者说有两个元素,前者取的是中间偏左的元素,后者取的是中间偏右的元素。

循环结束条件可以是lo<hi,也可以是lo<=hi,这与初始化、计算中间位置、逼近方法以及返回值都有关系。

逼近时有三种情况,分别是a[mid]<target、a[mid]>target和a[mid]==target。

下面是一种可行的组合,或者说是编码套路:

1、初始化采用闭区间,即lo=0, hi=size-1。

2、如果是求最小的i,则用mid=lo+(hi-lo)/2;如果是求最大的i,则用mid=lo+(hi-lo+1)/2;如果求任意的i,两者均可。

3、循环条件始终为lo<hi。

4、逼近时始终保持闭区间,三种情况分别处理,不做合并。写完之后如果代码可简化,再行合并处理。

5、返回值处需要对下标做有效性检查,即不能越界,另外还要检查该位置的数是否满足要求,只有两者同时成立才算成功找到。

下面根据上述编码套路,分别解决开始的6个问题,为简单说明起见,这里假定数组里存的都是整数。

1、给定非降序数组A,求任意一个i使得A[i]等于target,如不存在则返回-1。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo) / 2;
 5
if (target < a[mid])
 6
hi = mid - 1;
 7
else if (target > a[mid])
 8
lo = mid + 1;
 9
else
10
return mid;
11 
}
12
return (lo >= 0 && lo < size && a[lo] == target) ? lo : -1;
13 }
View Code

2、给定非降序数组A,求最小的i使得A[i]等于target,如不存在则返回-1。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo) / 2;
 5
if (target < a[mid])
 6
hi = mid - 1;
 7
else if (target > a[mid])
 8
lo = mid + 1;
 9
else
10
hi = mid;
11 
}
12
return (lo >= 0 && lo < size && a[lo] == target) ? lo : -1;
13 }
View Code

3、给定非降序数组A,求最大的i使得A[i]等于target,如不存在则返回-1。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo + 1) / 2;
 5
if (target < a[mid])
 6
hi = mid - 1;
 7
else if (target > a[mid])
 8
lo = mid + 1;
 9
else
10
lo = mid;
11 
}
12
return (lo >= 0 && lo < size && a[lo] == target) ? lo : -1;
13 }
View Code

4、给定非降序数组A,求最小的i使得A[i]大于target,如不存在则返回-1。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo) / 2;
 5
if (target < a[mid])
 6
hi = mid;
 7
else if (target > a[mid])
 8
lo = mid + 1;
 9
else
10
lo = mid + 1;
11 
}
12
return (lo >= 0 && lo < size && a[lo] > target) ? lo : -1;
13 }
View Code

5、给定非降序数组A,求最大的i使得A[i]小于target,如不存在则返回-1。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo + 1) / 2;
 5
if (target < a[mid])
 6
hi = mid - 1;
 7
else if (target > a[mid])
 8
lo = mid;
 9
else
10
hi = mid - 1;
11 
}
12
return (lo >= 0 && lo < size && a[lo] < target) ? lo : -1;
13 }
View Code

6、给定非降序数组A和待插入元素target,返回待插入位置的下标。

 1 int FindPos(int a[], int size, int target) {
 2
int lo = 0, hi = size - 1, mid;
 3
while (lo < hi) {
 4
mid = lo + (hi - lo) / 2;
 5
if (target < a[mid])
 6
hi = mid;
 7
else if (target > a[mid])
 8
lo = mid + 1;
 9
else
10
lo = mid + 1;
11 
}
12
return (lo >= 0 && lo < size && a[lo] > target) ? lo : lo + 1;
13 }
View Code

其他说明:

1、按套路写出来的代码可能会有冗余,主要表现在逼近步骤和返回值两处,写完后可做简化,不处理也能正确运行。

2、由于循环条件是lo<hi,所以退出时必有lo==hi,但是要注意循环可能根本就没有进入。

3、逼近时关于lo和hi的取值需要根据要求确定,建立循环不变式是个很好的办法。

除查找有序数组外,二分查找还有很多其他应用,其精髓在于每次都能将范围缩减至少一半,而不在乎用什么手段,或者是否有序。

转载于:https://www.cnblogs.com/boyfaceone/p/4645550.html

最后

以上就是酷炫墨镜为你收集整理的二分查找编码套路的全部内容,希望文章能够帮你解决二分查找编码套路所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部