概述
对于多处理来说,计算负担似乎不够大。在
然而,对于那些对我的问题中的图像处理部分感兴趣的人,我发现了另一种更快速的方法(比以前的方法15到20倍)在没有for循环的情况下完成同样的事情:from matplotlib import cm
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
from PIL import Image
cm_jet = cm.get_cmap('jet')
img_src = Image.open(r'path to your grey image')
img_src.mode='I'
Img_grey = list(img_src.getdata())
max_img = max(Img_grey)
min_img = min(Img_grey)
rgb_array=np.uint8(cm_jet(((np.array(img_src)-min_img)/(max_img-min_img)))*255)
ax = plt.subplot(111)
im = ax.imshow(rgb_array, cmap='jet')
divider = make_axes_locatable(ax)
cax_plot = divider.append_axes("right", size="5%", pad=0.05)
cbar=plt.colorbar(im, cax=cax_plot, ticks=[0,63.75,127.5,191.25,255])
dx_plot=(max_img-min_img)/255
cbar.ax.set_yticklabels([str(min_img),str(round(min_img+63.75*dx_plot)),str(round(min_img+127.5*dx_plot)),str(round(min_img+191.25*dx_plot)), str(max_img)])
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
plt.savefig('test_jet.jpg', quality=95, dpi=1000)
最后
以上就是单薄热狗为你收集整理的python3中for循环内的变量_Python3.7:使用共享变量多处理for循环的全部内容,希望文章能够帮你解决python3中for循环内的变量_Python3.7:使用共享变量多处理for循环所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复