概述
clear all; close all; clc; %生成两组已标记数据 randn('seed',1); mu1=[0 0]; S1=[0.5 0; 0 0.5]; P1=mvnrnd(mu1,S1,100); mu2=[0 6]; S2=[0.5 0; 0 0.5]; P2=mvnrnd(mu2,S2,100); mu3=[6 6]; S3=[0.5 0; 0 0.5]; P3=mvnrnd(mu3,S3,100); mu4=[6 0]; S4=[0.5 0; 0 0.5]; P4=mvnrnd(mu4,S4,100); P = [P1;P2;P3;P4]'; %设置标记 T1 = zeros(100,1); T2 = ones(100,1); T11 = [T1;T1;T2;T2]'; T22 = [T1;T2;T2;T1]'; %T11 = [T1;T2;T1;T1]'; %T22 = [T1;T1;T1;T2]'; net1 = newp([1 1; 1 1],1); net1 = train(net1,P,T11); net2 = newp([1 1; 1 1],1); net2 = train(net2,P,T22); plotpv(P,[T1;T2;T1;T2]'); %画出数据 plotpc(net1.iw{1,1},net1.b{1,1}) %画出分类线 plotpc(net2.iw{1},net2.b{1}) %画出分类线 %生成测试数据 mu2=[3 3 ]; S2=[2 0 ; 0 2]; Q=mvnrnd(mu2,S2,100)'; Y1 = sim(net1,Q) ; %Y是利用感知器net对Q进行分类的结果 Y2 = sim(net2,Q); Y = xor(Y1,Y2); figure; plotpv(Q,Y); %画出输入的结果表示的点 plotpc(net1.iw{1},net1.b{1}) %画出分类线 plotpc(net2.iw{1},net2.b{1}) %画出分类线
对已标记数据分类:
对测试数据分类:
最后
以上就是清秀耳机为你收集整理的matlab练习程序(异或分类)的全部内容,希望文章能够帮你解决matlab练习程序(异或分类)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复