我是靠谱客的博主 包容红酒,最近开发中收集的这篇文章主要介绍经典排序算法原理及稳定性判断,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1. 冒泡排序

原理:

n个记录看作按纵向排列,每趟排序时自下至上对每对相邻记录进行比较,若次序不符合要求(逆序)就交换。每趟排序结束时都能使排序范围内关键字最小的记录象一个气泡一样升到表上端的对应位置,整个排序过程共进行n-1趟,依次将关键字最小、次小、第三小…的各个记录“冒到”表的第一个、第二个、第三个… 位置上。

例子

例子为从小到大排序,
原始待排序数组| 6 | 2 | 4 | 1 | 5 | 9 |
第一趟排序(外循环)
第一次两两比较6 > 2交换(内循环)
交换前状态| 6 | 2 | 4 | 1 | 5 | 9 |
交换后状态| 2 | 6 | 4 | 1 | 5 | 9 |
第二次两两比较,6 > 4交换
交换前状态| 2 | 6 | 4 | 1 | 5 | 9 |
交换后状态| 2 | 4 | 6 | 1 | 5 | 9 |
第三次两两比较,6 > 1交换
交换前状态| 2 | 4 | 6 | 1 | 5 | 9 |
交换后状态| 2 | 4 | 1 | 6 | 5 | 9 |
第四次两两比较,6 > 5交换
交换前状态| 2 | 4 | 1 | 6 | 5 | 9 |
交换后状态| 2 | 4 | 1 | 5 | 6 | 9 |
第五次两两比较,6 < 9不交换
交换前状态| 2 | 4 | 1 | 5 | 6 | 9 |
交换后状态| 2 | 4 | 1 | 5 | 6 | 9 |
第二趟排序(外循环)
第一次两两比较2 < 4不交换
交换前状态| 2 | 4 | 1 | 5 | 6 | 9 |
交换后状态| 2 | 4 | 1 | 5 | 6 | 9 |
第二次两两比较,4 > 1交换
交换前状态| 2 | 4 | 1 | 5 | 6 | 9 | 
交换后状态| 2 | 1 | 4 | 5 | 6 | 9 |
第三次两两比较,4 < 5不交换
交换前状态| 2 | 1 | 4 | 5 | 6 | 9 | 
交换后状态| 2 | 1 | 4 | 5 | 6 | 9 |
第四次两两比较,5 < 6不交换
交换前状态| 2 | 1 | 4 | 5 | 6 | 9 |
交换后状态| 2 | 1 | 4 | 5 | 6 | 9 |
第三趟排序(外循环)
第一次两两比较2 > 1交换
交换后状态| 2 | 1 | 4 | 5 | 6 | 9 |
交换后状态| 1 | 2 | 4 | 5 | 6 | 9 |
第二次两两比较,2 < 4不交换
交换后状态| 1 | 2 | 4 | 5 | 6 | 9 | 
交换后状态| 1 | 2 | 4 | 5 | 6 | 9 |
第三次两两比较,4 < 5不交换
交换后状态| 1 | 2 | 4 | 5 | 6 | 9 | 
交换后状态| 1 | 2 | 4 | 5 | 6 | 9 |
第四趟排序(外循环)无交换
第五趟排序(外循环)无交换
排序完毕,输出最终结果1 2 4 5 6 9

稳定性判断:


冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个
元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变.
所以冒泡排序是一种稳定排序算法。

2. 选择排序

原理:

  顾名思意,就是直接从待排序数组里选择一个最小(或最大)的数字,每次都拿一个最小数字出来,顺序放入新数组,直到全部拿完。

  再简单点,对着一群数组说,你们谁最小出列,站到最后边,然后继续对剩余的无序数组说,你们谁最小出列,站到最后边,再继续刚才的操作,一直到最后一个,继续站到最后边,现在数组有序了,从小到大。

例子

先说看每步的状态变化,后边介绍细节,现有无序数组[6 2 4 1 5 9]
第一趟找到最小数1,放到最前边(与首位数字交换)
交换前:| 6 | 2 | 4 | 1 | 5 | 9 |
交换后:| 1 | 2 | 4 | 6 | 5 | 9 |
第二趟找到余下数字[2 4 6 5 9]里的最小数2,与当前数组的首位数字进行交换,实际没有交换,本来就在首位
交换前:| 1 | 2 | 4 | 6 | 5 | 9 |
交换后:| 1 | 2 | 4 | 6 | 5 | 9 |
第三趟继续找到剩余[4 6 5 9]数字里的最小数4,实际没有交换,4待首位置无须交换
第四趟从剩余的[6 5 9]里找到最小数5,与首位数字6交换位置
交换前:| 1 | 2 | 4 | 6 | 5 | 9 |
交换后:| 1 | 2 | 4 | 5 | 6 | 9 |
第五趟从剩余的[6 9]里找到最小数6,发现它待在正确的位置,没有交换
排序完毕输出正确结果[1 2 4 5 6 9]
下面是找出最小数的算法:
第一趟找到最小数1的细节
当前数组是| 6 | 2 | 4 | 1 | 5 | 9 |
先把6取出来,让它扮演最小数
当前最小数6与其它数一一进行比较,发现更小数就交换角色
当前最小数62比较,发现更小数,交换角色,此时最小数是2,接下来2与剩余数字比较
当前最小数24比较,不动
当前最小数21比较,发现更小数,交换角色,此时最小数是1,接下来1与剩余数字比较
当前最小数15比较,不动
当前最小数19比较,不动,到达末尾
当前最小数1与当前首位数字进行位置交换,如下所示
交换前:| 6 | 2 | 4 | 1 | 5 | 9 |
交换后:| 1 | 2 | 4 | 6 | 5 | 9 |
完成一趟排序,其余步骤类似

稳定性判断:


选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。
比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。

3. 插入排序

原理:

  插入排序就是每一步都将一个待排数据按其大小插入到已经排序的数据中的适当位置,直到全部插入完毕。

  插入排序方法分直接插入排序和折半插入排序两种。

  折半插入排序基本思想和直接插入排序一样,区别在于寻找插入位置的方法不同,折半插入排序采用折半查找法来寻找插入位置。折半查找法只能对有序的序列使用。基本思想就是查找插入位置的时候,把序列分成两半(选择一个中间数mid),如果带插入数据大于mid则到右半部分序列去在进行折半查找;反之,则到左半部分序列去折半查找。

例子

设数组为a[0…n-1]。
1.
初始时,a[0]自成1个有序区,无序区为a[1..n-1]。令i=1
2.a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3.
i++并重复第二步直到i==n-1。排序完成。

稳定性判断:


插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。
如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序。
所以插入排序是稳定的。

4. 快速排序

原理:

通过一趟扫描将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

例子

如无序数组[6 2 4 1 5 9]
a),先把第一项[6]取出来,
用[6]依次与其余项进行比较,
如果比[6]小就放[6]前边,2 4 1 5都比[6]小,所以全部放到[6]前边
如果比[6]大就放[6]后边,9比[6]大,放到[6]后边,//6出列后大喝一声,比我小的站前边,比我大的站后边,行动吧!霸气十足~
一趟排完后变成下边这样:
排序前 6 2 4 1 5 9
排序后 2 4 1 5 6 9
b),对前半拉[2 4 1 5]继续进行快速排序
重复步骤a)后变成下边这样:
排序前 2 4 1 5
排序后 1 2 4 5
前半拉排序完成,总的排序也完成:
排序前:[6 2 4 1 5 9]
排序后:[1 2 4 5 6 9]
排序结束

稳定性判断:


快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],
其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j]。
重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11,现在中枢元素53(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱。
所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻
。

5. 归并排序

原理:

把原始数组分成若干子数组,对每一个子数组进行排序,继续把子数组与子数组合并,合并后仍然有序,直到全部合并完,形成有序的数组。

例子

无序数组[6 2 4 1 5 9]
先看一下每个步骤下的状态,完了再看合并细节
第一步 [6 2 4 1 5 9]原始状态
第二步 [2 6] [1 4] [5 9]两两合并排序,排序细节后边介绍
第三步 [1 2 4 6] [5 9]继续两组两组合并
第四步 [1 2 4 5 6 9]合并完毕,排序完毕
输出结果[1 2 4 5 6 9]
合并细节
详细介绍第二步到第三步的过程,其余类似
第二步:[2 6] [1 4] [5 9]
两两合并,其实仅合并[2 6] [1 4],所以[5 9]不管它,
原始状态
第一个数组[2 6]
第二个数组[1 4]
--------------------
第三个数组[...]
第1步,顺序从第一,第二个数组里取出一个数字:21
比较大小后将小的放入第三个数组,此时变成下边这样
第一个数组[2 6]
第二个数组[4]
--------------------
第三个数组[1]
第2步,继续刚才的步骤,顺序从第一,第二个数组里取数据,24,
同样的比较大小后将小的放入第三个数组,此时状态如下
第一个数组[6]
第二个数组[4]
--------------------
第三个数组[1 2]
第3步,再重复前边的步骤变成,将较小的4放入第三个数组后变成如下状态
第一个数组[6]
第二个数组[...]
--------------------
第三个数组[1 2 4]
第4步,最后将6放入,排序完毕
第一个数组[...]
第二个数组[...]
--------------------
第三个数组[1 2 4 6]
[ 1 2 4 6 ]与[ 5 9 ]的合并过程与上边一样,不再分解

稳定性判断:


归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接
有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。
所以,归并排序也是稳定的排序算法。

6. 基数排序

原理:

一个元素有多个关键字,定义排序后的“有序”是指依次比较这些关键字,不同的直接按其大小关系,相同的比较后续的关键字,例如字符串与数字。然后,这些关键字都有一些范围。依次选取这些关键字作为依据,进行依次分类,这样,类别之间就有了相对的大小关系。然后,对每个类别进行相同的操作,直至所有关键字都被比较过为止。

例子

待排序数组[62,14,59,88,16]简单点五个数字
分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,变成下边这样
|
0
|
0
| 62 |
0
| 14 |
0
| 16 |
0
|
88 | 59 |
|
0
|
1
|
2
|
3
|
4 |
5
|
6
|
7
|
8
|
9
|桶编号
将桶里的数字顺序取出来,
输出结果:[62,14,16,88,59]
再次入桶,不过这次以十位数的数字为准,进入相应的桶,变成下边这样:
由于前边做了个位数的排序,所以当十位数相等时,个位数字是由小到大的顺序入桶的,就是说,入完桶还是有序
|
0
| 14,16 |
0
|
0
|
0
| 59 | 62
| 0
| 88
|
0
|
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|桶编号
因为没有大过100的数字,没有百位数,所以到这排序完毕,顺序取出即可
最后输出结果:[14,16,59,62,88]

稳定性判断:


基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类
推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集。
所以其是稳定的排序算法。

7. 希尔排序(shell)

原理:

  希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
  该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。

例子

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

第一次 gap = 10 / 2 = 5

4938659726132749554
1A1B
2A2B
3A3B
4A4B
5A5B

  1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4)这样每组排序后就变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26),下同。

第二次 gap = 5 / 2 = 2

排序后

1327495544938659726
1A1B1C1D1E
2A2B2C2D2E

第三次 gap = 2 / 2 = 1

4261327384949559765
1A1B1C1D1E1F1G1H1I1J

第四次 gap = 1 / 2 = 0 排序完成得到数组:

4132627384949556597

稳定性判断:


希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步
长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入
排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多
次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同
的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱
。
所以shell排序是不稳定的。

8. 堆排序

原理:

  堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
  既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始
例子
堆排序

稳定性判断:


我们知道堆的结构是节点i的孩子为2*i2*i+1节点,大顶堆要求父节点大于等于
其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n 的序列,堆排序
的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素
之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, ...1这些个父节点选择元素时
,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个
父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了
。
所以堆排序不是稳定算法。

常用的排序算法的时间复杂度和空间复杂度

排序算法最差时间分析平均时间复杂度稳定性空间复杂度
冒泡排序 O(n2) O(n2) 稳定 O(1)
快速排序 O(n2) O(nlog2n) 不稳定 O(log2n) O(n)
选择排序 O(n2) O(n2) 稳定 O(1)
二叉树排序 O(n2) O(nlog2n) 不一定 O(n)
插入排序 O(n2) O(n2) 稳定 O(1)
堆排序 O(nlog2n) O(nlog2n) 不稳定 O(1)
希尔排序 O O不稳定 O(1)

最后

以上就是包容红酒为你收集整理的经典排序算法原理及稳定性判断的全部内容,希望文章能够帮你解决经典排序算法原理及稳定性判断所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(101)

评论列表共有 0 条评论

立即
投稿
返回
顶部