概述
class G():
def __init__(self):
with tf.variable_scope('a'):
self.a=tf.Variable([[[0.1,0.2,0.5,0.2],
[0.1,0.1,0.1,0.7]],
[[0.2,0.3,0.2,0.3],
[0.2,0.2,0.2,0.4]]])
with tf.variable_scope('c'):
outputs = self.conv(self.a)
self.outputs = self.conv(outputs)
outputs = self.conv(outputs)
self.outputs1 = self.conv(outputs)
def conv(self,inputs,scope="m",reuse=tf.AUTO_REUSE):
# with tf.variable_scope(scope, reuse=reuse):
outputs=tf.layers.conv1d(inputs=inputs,filters=3,kernel_size=1,activation=None,use_bias=False,
kernel_initializer=tf.ones_initializer())
outputs = tf.layers.conv1d(inputs=outputs, filters=4, kernel_size=1, activation=None, use_bias=False,kernel_initializer=tf.ones_initializer())
# outputs=outputs #+ inputs
return outputs
def normalize(self,inputs,
epsilon=1e-8,
scope="ln",
reuse=None):
with tf.variable_scope(scope, reuse=reuse):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta = tf.Variable(tf.zeros(params_shape))
gamma = tf.Variable(tf.ones(params_shape))
normalized = (inputs - mean) / ((variance + epsilon) ** (.5))
outputs = gamma * normalized + beta
return outputs
g=G()
a=g.a
outputs=g.outputs
outputs1=g.outputs1
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(a.name)
print(sess.run(outputs))
print('o',outputs.name)
print(sess.run(outputs1))
print('o1',outputs1.name)
最后
以上就是紧张美女为你收集整理的tf.varible_scope()和tf.AUTO_REUSE的全部内容,希望文章能够帮你解决tf.varible_scope()和tf.AUTO_REUSE所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复